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Characterization of Corrugated Waveguides
by Modal Analysis

Jaime Esteban and Jesis M. Rebollar

Abstract —A general formulation for the characterization of
corrugated waveguides is presented. The formulation is based
on modal expansion in the different smooth-walled waveguides
which constitute the corrugated structure and on the use of
mode matching at discontinuities. The use of an admittance
matrix formulation and a suitable root-finding algorithm leads
to a rigorous and efficient technique. Dispersion curves are
presented for corrugated waveguides of circular and rectangular
cross sections. As predicted by other authors, complex modes
have been obtained for deep corrugations. The effect of the finite
thickness and width of teeth and slots on the dispersion behav-
ior is also shown.

1. INTRODUCTION

HE modal dispersion behavior of corrugated wave-

guides has been of interest because of their applica-
tions in structures and devices such as antennas and
feeders [1], [2], mode converters [3], filters, and polarizers
[4] or even in transmission systems, owing to the low
attenuation characteristics that corrugated waveguides can
exhibit [5], [6]. '

The first solutions for corrugated waveguides were
based on the impedance boundary approach [7], [8]. More
rigorous techniques are based on the space-harmonic
formulation, i.e., a transverse field matching of the field
descriptions on the different transverse regions in which
the structure is decomposed [2], [9]. Other approaches are
based on mode expansions on the longitudinal regions
and mode matching at the transverse discontinuities of
the structure [10], [11].

In this paper a mode-matching technique is presented.
The use of this technique to analyze corrugated wave-
guides makes use of the following remarkable properties:

1) The structure alternates between large and small
cross sections; hence, its discontinuities become suit-
able for analysis by specific multimode formulations
as the admittance matrix formulation [12].

2) As a consequence of Floquet’s theorem, only one
spatial period must be analyzed.

The aim of this paper is to analyze corrugated wave-
guides by means of the mode-matching technique, a for-
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mulation with admittance multimode parameters, and the
use of Floquet’s theorem. The field equations and the
derivation of the characteristic equation are given in
Sections II and III. Section IV deals with numerical
aspects (efficiency, convergence, and stability) of the pro-
posed formulation. In Sections V and VI the method is
applied to corrugated waveguides of circular and rectan-
gular cross sections.

II. FieLp EqQuATIONS

The geometry of one period of a general periodic
corrugated structure is shown in Fig. 1, where the period
has been divided into regions of smooth-walled wave-
guides. At both sides of each discontinuity, i.c., at z = — ¢,
z=0, and z =g, the transverse electric and magnetic
ficlds are expanded in terms of the eigenmodes of the
smooth-walled waveguides (regions I to III).

By means of current and voltage expansion coefficients

[13],
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where the superscripts L and R denote the left and right
sides of the regions, respectively.

The transverse fields e and A% of the nth mode of
region v (v =1, I, III) are suitably normalized over the
cross section S, so that

1 for propagating modes
+j for evanescent modes.

)

Imposing the boundary conditions for the transverse
electric and magnetic fields and using the orthogonality of

5,(n)= [ (& xhy) d5*=
Sy
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Fig. 1.
period of a corrugated waveguide.

the modes [14], the column vectors of current and voltage
coefficients can be related to each other in the following
manner. At z =0,

puL - A—lsTVIR
ATIS IR = ['R, 3
At z=g,
pUR - A71gTy L
A7LS, 1R = JUIL (4)

where A; and A are diagonal matrices with elements

A, =diag(8,(n)) A =diag(y(m)) (5)
and the elements of the matrix §, are given by
So(n,m) = f VX RY)-ds'= X(n,m)Y,X.  (6)

The matrix S, has been decomposed, for convenience,
into the product of a real and frequency-independent
term, X(n,m), and the complex admittance of the mth
mode of region II, Y.

The current and voltage coefficients in the left and
right sides of region II are related by the well-known
telegraphists’ equation for the modes of this waveguide:

VIIL — C VHR + S IHR

IIIL S VHR+C IHR (7)

where C, and §, are diagonal matrices with elements

Cy(m,m) = cosh('y,gg)

(8)

and yI is the propagation constant of the mth mode of
region 1L

Suitable manipulations of (3), (4) and (7) lead to the
admittance Y-matrix representation of the combined
structure (step discontinuity at z = 0, uniform region II,
and step discontinuity at z = g):

IIR — YHVIR + Y13VIHL

mL _ IR j3105
L=y, VIR y, v

S (m,m) =sinh(y,g)

©)

Current and voltage coefficients at the discontinuities of one”

where
Y =Y;=— Aﬁlso

CC,AL'ST

Y Y31 IA IIISO

(10)

Henceforth, the procedure used to characterize the
corrugated waveguide is the same, whatever the geometry
to be modeled by the Y matrices of equations (9) may be.
The formulation can thus be generalized to more complex
corrugated structures. However, the proposed method
will be applied herein only to the simple corrugations,

As with region II, the current and voltage coefficients
in the left and right sides of region I can be related by

R=cy't+s 1"

R=SyIL+C 1" (11)

with the definitions for C,, S,, and v, being similar to
those of C,, S, and y,,

The combination of (9) and (11) will lead to a relation-
ship between transverse fields at the left of regions I and
II1, i.e., at z=—¢" and z = g™. But that is not the only
relationship that can be stated between those fields. By
means of Floquet’s theorem,

JUL _ o fIL

VHIL — xVIL

(12)
where the scalar variable x = exp(I'(¢ + g)), and I is the
propagation constant of a corrugated waveguide eigen-
mode (expanded, in each region, in terms of the modes of
the smooth-walled waveguide that constitute that region).
Since both positive and negative values of T' are allowed,

the propagation direction has not been imposed.
Equations (9), (11), and (12) lead to

(o Ynst)IIL =(-8,+Y,C,+ Y13x)VIL
(Ux = Y;38,) I = (Y,5,C, + Yy x)V'E

where U is the unit matrix.

The equation system (13) constitutes the eigenvector
and eigenvalue problem, to be solved for the current and
voltage coefficients and for the propagation constants of
the corrugated waveguide modes.

(13)

ITI. THE CHARACTERISTIC EQUATION

For the numerical computation of (13), the mode sums
(1) must be truncated to a finite number of terms. N;
modes are considered in region I (and, therefore, the
same number of modes is considered in region III be-
cause of periodicity), and Ny modes in region II. Equa-
tions (13) lead to a characteristic equation of the form
det(M) =0, where M is a (2N; X 2 N;) matrix:

(C,—Y,S8,) (8, —Y,C, —Yx)

det
(Ux —Y138,) —(¥5C, +Yx)

=0. (14)

The applicable numerical root-finding methods are
based on the evaluation of the determinant at a large
number of values of the variable x. Since the calculation
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of the determinant of an (n X n) matrix requires 6(n>)
operations, any effort to reduce the dimension of the
characteristic matrix, M, will have a great influence on
the efficiency of the technique.

Hence, advantage can be taken of the fact that the
matrix (C, —Y,,S,) is independent of x, in order to re-
duce the eigenvector dimension. From the first of equa-
tions (13), the column vector I'X can be related to V1L,
and its value can then be introduced in the second equa-
tion (13), obtaining a new eigenvalue and eigenvector
problem of the form

(A’x2+B'x+C’)VIL=O (15)
whose condition for nontrivial solution is
det(4'x*+ B'x+C')=0. (16)

The expression (16) constitutes the new characteristic
equation, where

A = PY,,
B'=Y,; - P(S, - Yllct) — Y38, PY;

C'=-Y,;C + Y13StP(St - Yllct) (17)

and
P=(C,—YyS) "

Hence, with the only drawback of the inversion of the
matrix (C, —Y,,S,), the dimension of the characteristic
matrix has been decreased from 2N, to Ny, with a reduc-
tion of the CPU time by a factor of 2N; /N;)? =38, ie.,
almost an order of magnitude. Since P is independent of
the search variable x, the calculation of P is carried out
only once and does not significantly increase the com-
puter time needed.

The matrices 4’, B’, and C' can be scaled by premulti-
plying by jA;. In this manner, replacing 4', B’, and C’ by
A=jA;A, B=jA;B' and C = jAC’ in (16), a new char-
acteristic equation is obtained:

det(Ax>+ Bx +C) =0 (18)

where the left side of the equation is a 2N;-degree
polynomial of real coefficients, for each of the elements
of the matrix (4x2 + Bx + C) is a two-degree polynomial
with real coefficients. The 2N; roots x, of polynomial
(18) give the propagation constants, T, = In(x,,) /(t + g),
of the different modes of the corrugated waveguide. Since
no propagation direction has been imposed, both + I,
and — T, are true propagation constants and, therefore,
both x,; and 1/x,; are solutions of (18). For that reason,
only N; different corrugated waveguide modes are ob-
tained, i.e., the number of summation terms in region L
This situation also arises in the analysis proposed in [10].
In addition, because of the multivalued nature of the
logarithmic function, both + T, + j2kw /(t+g) and
—T,, + j2km /(¢ + g) will also be roots (where k is an
integer). This leads to a periodic f versus B diagram with
period 27 /(t + g), as expected for a periodic structure of
spatial period T = (¢ + g).

IV. THE CHARACTERIZATION PROCEDURE:
NUMERICAL ASPECTS

The different steps of the characterization procedure
can now be summarized as follows:

The first step involves computing the coupling integrals
X(n,m). Given a corrugated structure, the decomposition
of S, in (6) permits the isolation of the frequency-inde-
pendent integrals X(n,m) and the frequency-dependent
modal admittances Y,.. In this manner, the matrix X
must be computed only once, and some CPU time is
saved.

The second step has two parts:

1) For each frequency, compute the matrices 4, B,
and C. At first glance this computation seems to
require a high number of matrix operations. How-
ever, most of the matrices involved in the formula-
tion are diagonal. As a result, the computation of A4,
B, and C requires only six full-matrix multiplications
and the inversion of matrix P that, as can casily be
proved, is real.

Furthermore, with a careful rewriting (or even
with a careful coding) of the presented formulation,
the utilization of complex numbers in the computa-
tion of 4, B, and C can be avoided, since the
analysis of discontinuities with admittance matrices
can be carried out using real algebra [12].

2) For each frequency, solve the characteristic equation
p(x)=det(Ax?+ Bx + C)=0. Since p(x) is a 2N;-
degree polynomial, a quick root-finding procedure
would be to sample p(x) at 2N; different values x,,
then compute the coefficients of the polynomial that
fits the 2N; pairs (x,, p(x;)), and then compute the
roots of the fitted polynomial by means of any of the
well-known algorithms. This procedure would re-
quire only 2 N, evaluations of the determinant. How-
ever, this polynomial fitting technique may yield
inaccurate results. If a relatively high number of
terms is used, the same high number of corrugated
waveguide modes will be obtained. Therefore, some
computed modes will have real propagation con-
stants with large magnitude, I, =q,> 1, which
means that for some roots x; =exp(a,(z + g)) < 1.
Since I’ = ~T, are also correct propagation con-
stants, for some other roots x;=1/x,> 1. Hence,
p(x) will have a number of roots with large magni-
tude, and the same number of roots with small
magnitude. Sampling the polynomial to obtain its
coefficients is, in this case, an unstable and inaccu-
rate procedure. However, there is an iterative nu-
merical root-finding technique well suited for this
problem: Muller’s method with implicit deflation
[15]. This is a useful method for obtaining both real
and complex roots of a polynomial, even if these
roots are not simple. Although the method requires
initial guesses, its convergence for polynomials is so
good that, in fact, any initial set of guesses provides
the required convergence. In any event, in the calcu-
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Fig. 2. Geometry of the circular corrugated waveguide.
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Fig. 3. Dispersion behavior of circular corrugated waveguides. r; = 10.0
mm, ¢ =0.01 mm, g =1.00 mm. (a) r; /rg=09. () r, /7;=07. ——
Present theory, ———— Theory of [2].

lation of a I" versus f diagram, the computed roots
at a frequency f, , are excellent guesses for a
frequency f, = f,_; + Af, which speeds up the con-
vergence rate. On the average, the computation of a
I' versus f diagram requires no more than 8N
evaluations of the determinant per frequency.

The convergence of the proposed characterization tech-
nique is guaranteed by the convergence of the mode-
matching technique. The relative convergence problem
shown by mode-matching techniques is overcome by a
suitable selection of the number of terms of the mode
expansions in the different regions of the structure.

The following instability problems may arise from the
utilization of the admittance matrix formulation:

* Singularities of the matrix §,, when any of its ele-
ments sinh(y'g) vanishes. These singularities occur
when yg = jglg = jkar, for any integer k.

0.0 L 1 T T - T
7 10 13 16 19

f (GHz)

Fig. 4. Effect of finite thickness of teeth and slots. r;=10.0 mm,
ro=15.09 mm. t=0.01 mm, g=20 mm. ——~ =04 mm,
g=16mm, -------t=08 mm, g =12 mm.

* Overflows in the computation of C,, C,, or §,'
when any of the values cosh(y g), cosh(y)t), or
1/sinh(yHg) is too large. These overflows occur when
ylg=allg>1lor yit=alt>1.

Nevertheless, for most of the geometries and frequency
ranges of interest, the period of the structure is electri-
cally short enough, and instabilities do not arise.

V. THE CiRcULAR CORRUGATED WAVEGUIDE

The geometry of the circular corrugated waveguide is
shown in Fig. 2. This structure has already been analyzed
by different techniques, such as the wall impedance ap-
proach [7] and the space-harmonic formulation [2], with
good results.

To obtain the corrugated waveguide modes with unity
azimuthal dependence, only the TE,, and TM,,, modes
of the smooth-walled waveguides are required. This is due
to the fact that, since the discontinuity is characterized
only by a change in radii, there are no mode conversions
between modes of different azimuthal dependence. The
number of modes in the different regions has been se-
lected as close as possible to the radius ratio, in order to
avoid the relative convergence problem. Unless men-
tioned otherwise, the number of terms in the inner region
(with radius r,) is N, = 10. This number has turned out to
yield sufficient asymptotic behavior.

Fig. 3 compares the results of our method with those of
Clarricoats and Saha [2] for an inner radius r; = 10.0 mm
and radius ratios of r, /r,=0.9 and r, /ry=0.7. Very
good agreement has been obtained. It is worth remarking
that the technique presented in this paper takes into
account the thickness and width of teeth and slots. Hence,
in order to reproduce the results of [2] (computed with
the approximations ¢ = 0, g << A,), values of ¢ and g have
been chosen so that, in the frequency range considered,
t <A, and g <A , where A, is the shortest wavelength
of the smooth-walled waveguides’ modes. The effect of
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Fig. 5. T versus f diagrams for circular corrugated waveguides with different radius ratios. Phase and attenuation
constants of complex modes are shown in dashed lines. r;=10.0 mm, ¢ =0.01 mm, g=1.00 mm. (a) r{ /ry=0.7,
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the finite widths of slots and teeth is presented in Fig. 4
for the case ry /ry=0.5.

In Fig. 5, more complete I' versus f diagrams are
presented for circular corrugated waveguides with inner
radius r, = 10.0 mm and different corrugation depths. For
the deeper corrugations, not only normal modes are ob-
tained, but also complex and backward-wave modes. The
so-called complex modes have propagation constants with
real and imaginary components (represented by dashed
lines in Fig. 5), and are supported by lossless structures.
These kinds of modes are known to exist in anisotropi-
cally and inhomogeneously filled waveguides [16] and
have been predicted in corrugated waveguides by Cooper
[17].

VI. Tue REcTANGULAR FOUR-CORRUGATED-WALL
WAVEGUIDE

Fig. 6 shows the geometry of a rectangular four-corru-
gated-wall waveguide. Although rectangular waveguides
with corrugations in the broad wall alone have been
successfully analyzed by the impedance boundary ap-
proach [18], in the case of corrugations on all four walls
some problems arise because of the impossibility of satis-
fying the impedance compatibility relation [8]. More rig-

e I ot

ISR

iw
T

Fig. 6. Geometry of the rectangular four-corrugated-wall waveguide.

o3
—] h

F— h

orous techniques have been developed for and applied to
device analysis [19] and corner-filled rectangular corru-
gated waveguide [20].

For the analysis of the four-corrugated-wall waveguide
by the technique presented in this paper, and because of
its symmetries, only two mode sets have been considered:
(1) even modes, generated by the TE, , and T™M,, ,
modes of the smooth-walled rectangular waveguide with
n even, and (2) odd modes, generated by TE,, , and
™,, , modes with # odd. In both cases, odd symmetry
with respect to the E plane has been considered; there-
fore, only modes with m odd are required. The results
presented in this paper have been computed by using
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Ny =10 terms (ten modes of the smooth-walled rectangu-
lar waveguides) in the inner regions (of cross-sectional
dimensions a X b). In order to avoid the relative conver-
gence problem, in the outer region (of cross-sectional
dimensions a +2/4 X b +2h) the number of terms Ny; has
been chosen to keep the mode ratio Ny /N, as close as
possible to the area ratio (a +2h X b +2h)/(a X b).

As a first test of the characterization technique pre-
sented in this paper the results presented in [21, figs. 2
and 3] have been calculated with the formulation pre-
sented herein. Once again the values of ¢ and g have
been chosen to satisfy t <A, and g < A,. Parts (a) and
(b) of Fig. 7 show, in continuous line, the modes obtained
by the proposed technique for two corrugation depths (for
clarity, complex modes are not shown). The crossing curves
must not cause surprise, since the two independent sets of
modes (with the two different symmetries) are repre-
sented in this figure. Good agreement with the theoretical
and experimental results of [21] can be observed for the
first two modes. However, some discrepancies have been
found between the results presented in [21] and our
results for higher order modes. On the one hand, our
results show modes not considered in the analysis of [21];
on the other hand, the impedance model used in [21] fails
to predict the transformation of higher order modes into
slow waves. In Fig. 8 the significant effect of finite tooth
thickness and slot width is shown.
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Fig. 9. I' versus f diagrams for a rectangular four-corrugated-wall
waveguide. Phase and attenuation constants of complex modes are
shown in dashed lines. a = 22.86 mm, b = 10.16 mm, ¢ = 0.01 mm, g = 1.00
mm, 4 =5.08 mm. (a) Even modes. (b) Odd modes.

Finally, Fig. 9 shows I' versus f diagrams for the
four-corrugated-wall waveguide of Fig. 7(b). In this case,
the diagrams for the two mode sets have been separated
from each other. Apart from the fact that complex modes
are also present in this structure, it is worth noting that
these diagrams are significantly more complicated than
those corresponding to circular corrugated waveguides.
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VII. CoONCLUSIONS

A general characterization technique for corrugated
waveguides has been proposed. The technique is based on
modal expansion of the fields in the smooth-walled wave-
guides that constitute the corrugated structure. The dis-
persion behavior of a corrugated structure can thus be
calculated without making any assumption about tooth
thickness and slot width and by taking into account all
relevant geometrical parameters.

Comparisons with other techniques and experlmental
results have been presented, and good agreement has
been obtained. The numerical examples considered in-
clude corrugated waveguides of circular and rectangular
-cross sections. In the rectangular case, the technique
proposed in this paper yields more accurate predictions of
the higher order modes than those based on the wall
impedance approach. In both circular and rectangular
"geometries, and for deep corrugations, complex modes
have been obtamed as previously suggested by other
authors.
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