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Characterization of Corrugated Waveguides

by Modal Analysis
Jaime Esteban and Jesfis M. Rebollar

Abstract —A general formulation for the characterization of

corrugated waveguides is presented. The formulation is based
on modal expansion in the different smooth-walled waveguides
which constitute the corrugated structure and on the use of

mode matching at discontinuities. The use of an admittance

matrix formulation and a suitable root-finding algorithm leads
to a rigorous and eff]cient technique. Dispersion curves are
presented for corrugated waveguides of circular and rectangular

cross sections. As predicted by other authors, complex modes
have been obtained for deep corrugations. The effect of the finite
thickness and width of teeth and slots on the dispersion behav-

ior is also shown.

I. INTRODUCTION

T HE modal dispersion behavior of corrugated wave-

guides has been of interest because of their applica-

tions in structures and devices such as antennas and

feeders [1], [2], mode converters [3], filters, and polarizers

[4] or even in transmission systems, owing to the low

attenuation characteristics that corrugated waveguides can

exhibit [5], [6].

The first solutions for corrugated waveguides were

based on the impedance boundary approach [7], [8]. More

rigorous techniques are based on the space-harmonic

formulation, i.e., a transverse field matching of the field

descriptions on the different transverse regions in which

the structure is decomposed [2], [9]. Other approaches are

based on mode expansions on the longitudinal regions

and mode matching at the transverse discontinuities of

the structure [10], [11].

In this paper a mode-matching technique is presented.

The use of this technique to analyze corrugated wave-

guides makes use of the following remarkable properties:

1)

2)

The structure alternates between large and small

cross sections; hence, its discontinuities become suit-

able for analysis by specific multimode formulations

as the admittance matrix formulation [12].

As a consequence of Floquet’s theorem, only one

spatial period must be analyzed.

The aim of this paper is to analyze corrugated wave-

guides by means of the mode-matching technique, a for-
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mulation with admittance multimode parameters, ancl the

use of Floquet’s theorem. The field equations and the

derivation of the characteristic equation are giverl in

Sections 11 and III. Section IV deals with numerical

aspects (efficiency, convergence, and stability) of the pro-

posed formulation. In Sections V and VI the method is

applied to corrugated waveguides of circular and rectan-

gular cross sections.

II. FIELD EQUATIONS

The geometry of one period of a general periodic

corrugated structure is shown in Fig. 1, where the period

has been divided into regions of smooth-walled w,ave-

guides. At both sides of each discontinuity, i.e., at z = – t,

z = O, and z = g, the transverse electric and magnetic

fields are expanded in terms of the eigenmodes of the

smooth-walled waveguides (regions I to III).

By means of current and voltage expansion coefficients

[13],

~=– t+:

2=0–.

2=0+.

z’=g-:

Z= g+:

?2 n

(1)

where the superscripts L and R denote the left and right

sides of the regions, respectively. _

The transverse fields ~~ and h: of the nth mode of

region v (v = I, II, III) are suitably normalized over the

cross section SU, so that

1 for propagating modes
au(n) =] (~xi;)”dr=

s“ t j for evanescent modes.

(2)

Imposing the boundary conditions for the transverse

electric and magnetic fields and using the orthogonality of
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Fig. 1. Current and voltage coefficients at the discontinuities of one

period of a corrugated waveguide.

the modes [14], the column vectors of current and voltage

coefficients can be related to each other in the following

manner. At z = O,

vn~ = A~}7$v1~

A~lsO#ll~ = Z1~ (3)

Atz=g,

~IIR = &ls:~IIIL

&lsO~IIR = ~HIL (4)

where A ~ and A1l are diagonal matrices with elements

A,= diag(81(n)) A,, = diag(811(m)) (5)

and the elements of the matrix SO are given by

So(n,r’?’z)=/ (z:xi-:)”dF= x(n, m)Y;I. (6)
S1

The matrix SO has been decomposed, for convenience,

into the product of a real and frequency-independent

term; X(n, m), and the complex admittance of the nzth

mode of region II, Y~I.

The current and voltage coefficients in the left and

right sides of region II are related by the well-known

telegraphists’ equation for the modes of this

VII~ = CgV1l~ + S#II~

111~ = SgVn~ + cgzn~

where Cg and S8 are diagonal matrices with

Cg(wr, nz) = cosh(ygg)

S,(nz, m)=sinh(y#g)

waveguide:

(7)

elements

(8)

and y~I is the propagation constant of the mth mode of

region H.

Suitable manipulations of (3), (4) and (7) lead to the
admittance Y-matrix representation of the combined

structure (step discontinuity at z = O, uniform region II,

and step discontinuity at z = g):

IIR = Y1lvI~ + Y13vm~

~nI~ ==y31~I~ + y33J7m~ (9)

where

Yll = Y33= – A;lSoS; lCgA;lS;

Y13= Y31= A;lSOS; lA;lS(. (lo)

Henceforth, the procedure used to characterize the

corrugated waveguide is the same, whatever the geometry
to be modeled by the Y matrices of equations (9) may be.

The formulation can thus be generalized to more complex

corrugated structures. However, the proposed method

will be applied herein only to the simple corrugations.

As with region II, the current and voltage coefficients

in the left and right sides of region I can be related by

VIR = cfJ”I~ + stlI~

~1~ = SfV1~ + C/llL (11)

with the definitions for Ct, St, and y; being similar to

those of C8, Sg, and y~I.

The combination of (9) and (11) will lead to a relation-

ship between transverse fields at the left of regions I and
HI, i.e., at z = – t+ and z = g+. But that is not the only

relationship that can be stated between those fields. By

means of Floquet’s theorem,

IIIIL = ~~IL

~IIIL = ~~IL (12)

where the scalar variable x = exp (Ilt + g)), and 17 is the

propagation constant of a corrugated waveguide eigen-

mode (expanded, in each region, in terms of the modes of

the smooth-walled waveguide that constitute that region).

Since both positive and negative values of 17 are allowed,

the propagation direction has not been imposed.

Equations (9), (11), and (12) lead to

(c, - Y1,S,)I lL = (- St + Yl,ct + Y13x)vI~

(u-x - Y13S,)IIL = (Y,3ct + Y,lX)VIL (13)

where U is the unit matrix.

The equation system (13) constitutes the eigenvector

and eigenvalue problem, to be solved for the current and

voltage coefficients and for the propagation constants of

the corrugated waveguide modes.

III. THE CHARACTERISTIC EQUATION

For the numerical computation of (13), the mode sums

(1) must be truncated to a finite number of terms. ~1

modes are considered in region I (and, therefore, the

same number of modes is considered in region III be-

cause of periodicity), and IVII modes in region II. Equa-

tions (13) lead to a characteristic equation of the form
det(M) = O, where M is a (2NI X 2fVI) matrix:

[

det (c, - Yllst)

1

(s, – Yllct – Y13X) = o ~14)

(UX - Y13st) - (Y13C, + Y,,x) “

The applicable numerical root-finding methods are

based on the evaluation of the determinant at a large

number of values of the variable x. Since the calculation
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of the determinant of an (n x n) matrix requires t9(n3)

operations, any effort to reduce the dimension of the

characteristic matrix, M, will have a great influence on

the efficiency of the technique.

Hence, advantage can be taken of the fact that the

matrix (Ct – YllSt) is independent of x, in order to re-

duce the eigenvector dimension. From the first of equa-

tions (13), the column vector lIL can be related to VIL,

and its value can then be introduced in the second equa-

tion (13), obtaining a new eigenvalue and eigenvector

problem of the form

(/l’x’ + B’x + C’)VIL = O (15)

whose condition for nontrivial solution is

det(A’x2 + B’x + C’) = O. (16)

The expression (16) constitutes the new characteristic

equation, where

A’= PY13

Br=y 11- P(st – Yllcr) – Y~3stPY~3

c’= – Y13C, + Y13stP(st – Yllct) (17)

and

P=(c, –Y1lS,) -l.

Hence, with the only drawback of the inversion of the

matrix (Ct – YllSt), the dimension of the characteristic
matrix has been decreased from 2NI to NI, with a reduc-

tion of the CPU time by a factor of (2N1 /N1)3 = 8, i.e.,

almost an order of magnitude. Since P is independent of

the search variable x, the calculation of P is carried out

only once and does not significantly increase the com-

puter time needed.

The matrices A’, B’, and C’ can be scaled by premulti-

plying by jAI. In this manner, replacing A’, B’, and C’ by

A = jAIA’, B = jAIB’ and C = jAIC’ in (16), a new char-

acteristic equation is obtained:

det(A.x2+Bx+C)=0 (18)

where the left side of the equation is a 2NI-degree

polynomial of real coefficients, for each of the elements

of the matrix (Ax 2 + Bx + C) is a two-degree polynomial

with real coefficients. The 2NI roots X(j, of polynomial

(18) give the propagation constants, r,, = ln(~Oi)/(t + g),
of the different modes of the corrugated waveguide. Since

no propagation direction has been imposed, both + ro,

and – roj are true propagation constants and, therefore,

both Xoi and l/xoi are solutions of (18). For that reason,

only iVI different corrugated waveguide modes are ob-

tained, i.e., the number of summation terms in region I.

This situation also arises in the analysis proposed in [10].

In addition, because of the multivalued nature of the

logarithmic function, both + 170i+ j2k~/(t + g) and

– ro, + j2km /(t + g) will also be roots (where k is an

integer). This leads to a periodic ~ versus ~ diagram with

period 27r /(t + g), as expected for a periodic structure of
spatial period T = (t + g).

IV. THE CHARACTERIZATION PROCEDURE:

NUMERICAL ASPECTS

The different steps of the characterization procedure

can now be summarized as follows:

The first step involves computing the coupling integrals

X(n, m). Given a corrugated structure, the decomposition

of So in (6) permits the isolation of the frequency-inde-

pendent integrals X(n, m) and- the frequency-dependent

modal admittances Y;. In this manner, the matrix X

must be computed only once, and some CPU time is

saved.

The second step has two parts:

1)

2)

For each frequency, compute the matrices A, B,

and C. At first glance this computation seems to

require a high number of matrix operations. How-

ever, most of the matrices involved in the formula-

tion are diagonal. As a result, the computation of A,

B, and C requires only six full-matrix multiplications

and the inversion of matrix P that, as can easily be

proved, is real.

Furthermorej with a careful rewriting (or even

with a careful coding) of the presented formulation,

the utilization of complex numbers in the computa-

tion of A, B, and C can be avoided, since the

analysis of discontinuities with admittance matrices

can be carried out using real algebra [12].

For each frequency, solve the characteristic equation

p(x) = det(Ax2 + Bx + C)= O. Since p(x) is a 2NI-

degree polynomial, a quick root-finding procedure

would be to sample P(x) at 2 IVI different values xi,

then compute the coefficients of the polynomial that

fits the 2NI pairs (x,, p(xi)), and then compute the

roots of the fitted polynomial by means of any of the

well-known algorithms. This procedure would re-

quire only 2NI evaluations of the determinant. How-

ever, this polynomial fitting technique may yield

inaccurate results. If a relatively high number of

terms is used, the same high number of corrugated

waveguide modes will be obtained. Therefore, some

computed modes will have real propagation con-

stants with large magnitude, r, = a, >>1, wh~ich

means that for some roots xi= exp (al(t + g)) <?<1.

Since r,’ = – r, are also correct propagation con-

stants, for some other roots x; = l\x, >>1. Hence,

P(x) will hive a number of roots with large magni-

tude, and the same number of roots with small

magnitude. Sampling the polynomial to obtain its

coefficients is, in this case, an unstable and inaccu-

rate procedure. However, there is an iterative nu-

merical root-finding technique well suited for this

problem: Muller’s method with implicit deflation

[15]. This is a useful method for obtaining both real

and complex roots of a polynomial, even if these

roots are not simple. Although the method requires

initial guesses, its convergence for polynomials is so

good that, in fact, any initial set of guesses provides

the required convergence. In any event, in the calcu-
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Fig. 2. Geometry of the circular corrugated waveguide
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Fig. 4. Effect of finite thickness of teeth
r. = 5.09 mm. — f = 0.01 mm, g = 2.0
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and slots. rl = 10.0 mm,
mm. –––– t= 0.4 mm,
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Fig. 3. Dispersion behavior of circular corrugated waveguides. rl = 10.0

mm, t = 0.01 mm, g = 1.00 mm. (a) rl /r. = 0.9. (b) t’l /r. = 0.7. —
Present theory. ---- Theory of [2].

lation of a r versus ~ diagram, the computed roots

at a frequency fn_~ are excelIent guesses for a

frequency fn = f,,_~+ A f, which speeds up the con-

vergence rate. On the average, the computation of a

r versus ~ diagram requires no more than 8~1

evaluations of the determinant per frequency.

The convergence of the proposed characterization tech-

nique is guaranteed by the convergence of the mode-

matching technique. The relative convergence problem

shown by mode-matching techniques is overcome by a

suitable selection of the number of terms of the mode

expansions in the different regions of the structure.

The following instability problems may arise from the

utilization of the admittance matrix formulation:

● Singularities of the matrix Sg, when any of its ele-

ments sinh (y,~g ) vanishes. These singularities occur

when y~g = j~~g = jkr, for any integer k.

“ Overflows in the computation of Cg, Cf, or S; 1

when any of the values cosh (y~g ), cosh (y~f), or

l/sinh (y#g) is too large. These overflows occur when

ysg=~~g >>1 or -i~t =a~t>>l.

Nevertheless, for most of the geometries and frequency

ranges of interest, the period of the structure is electri-

cally short enough, and instabilities do not arise.

V. THE CIRCULAR CORRUGATED WAVEGUIDE

The geometry of the circular corrugated waveguide is

shown in Fig. 2. This structure has already been analyzed

by different techniques, such as the wall impedance ap-

proach [7] and the space-harmonic formulation [2], with

good results.

To obtain the corrugated waveguide modes with unity

azimuthal dependence, only the TEL. and TMl,~ modes

of the smooth-walled waveguides are required. This is due

to the fact that, since the discontinuity is characterized

only by a change in radii, there are no mode conversions

between modes of different azimuthal dependence. The

number of modes in the different regions has been se-

lected as close as possible to the radius ratio, in order to

avoid the relative convergence problem. Unless men-

tioned otherwise, the number of terms in the inner region

(with radius rl) is iVl = 10. This number has turned out to

yield sufficient asymptotic behavior.

Fig. 3 compares the results of our method with those of

Clarricoats and Saha [2] for an inner radius r-l= 10.0 mm
and radius ratios of rl /rO = 0.9 and rl /r. = 0.7. Very

good agreement has been obtained. It is worth remarking

that the technique presented in this paper takes into

account the thickness and width of teeth and slots. Hence,

in order to reproduce the results of [2] (computed with

the approximations t = O, g << AO), values of t and g have

been chosen so that, in the frequency range considered,

t<< A8 and g << Ag, where As is the shortest wavelength

of the smooth-walled waveguides’ modes. The effect of
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Fig. 5. r versus ,f diagrams for circular corrugated waveguides with different radius ratios. Phase and attenuation

constants of complex modes are shown in dashed lines. rl=lO.O mm, t= O.01 mm, g=l.00 mm. (a) rl/ro =0.7,

(b) rl \ro = 0.6, (c) r, /r. = 0.5, (d) rl /r. = 0.4.

the finite widths of slots and teeth is presented in Fig. 4

for the case rl / r. = 0.5.

In Fig. 5, more complete 17 versus ~ diagrams are

presented for circular corrugated waveguides with inner

radius rl = 10.0 mm and different corrugation depths. For

the deeper corrugations, not only normal modes are ob-

tained, but also complex and backward-wave modes. The

so-called complex modes have propagation constants with

real and imaginary components (represented by dashed

lines in Fig. 5), and are supported by lossless structures.

These kinds of modes are known to exist in anisotropi-

cally and inhomogeneously filled waveguides [16] and

have been predicted in corrugated waveguides by Cooper

[17].

VI. THE RECTANGULAR FOUR-CORRUGATED-WALL

WAVEGUIDE

Fig. 6 shows the geometry of a rectangular four-corru-

gated-wall waveguide. Although rectangular waveguides

with corrugations in the broad wall alone have been

successfully analyzed by the impedance boundary ap-

proach [18], in the case of corrugations on all four walls

some problems arise because of the impossibility of satis-

fying the impedance compatibility relation [8]. More rig-

I--”-i it--’
i~l lnJl_nr

Fig. 6. Geometry of the rectangular four-corrugated-wall waveguicfe.

orous techniques have been developed for and applied to

device analysis [19] and corner-filled rectangular corru-

gated waveguide [20].

For the analysis of the four-corrugated-wall waveguide

by the technique presented in this paper, and because of

its symmetries, only two mode sets have been considered:

(1) even modes, generated by the TEn,. and TM~ .
modes of the smooth-walled rectangular waveguide with

n even, and (2) odd modes, generated by TE~. amd

TM~,~ modes with n odd. In both cases, odd symmetry

with respect to the E plane has been considered; there-

fore, only modes with m odd are required. The results

presented in this paper have been computed by using
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Fig. 7. Dispersion behavior of rectangular four-corrugated-wall wave-

guides. a = 22.86 mm, b = 10.16 mm, f = 0.01 mm, g = 1.00 mm. (a)
h = 5.08 mm, (b) h = 2.54 mm. — Present theory. Theory (----)

and measurements ( 000 ) of [21].

AII = 10 terms (ten modes of the smooth-walled rectangu-

lar waveguides) in the inner regions (of cross-sectional

dimensions a x b). In order to avoid the relative conver-

gence problem, in the outer region (of cross-sectional

dimensions a + 2iJzX lJ + 2h) the number of terms ~11 has

been chosen to keep the mode ratio ~11 \~I as close as

possible to the area ratio (a + 2h X b + 2h)\(a X b).

As a first test of the characterization technique pre-

sented in this paper the results presented in [21, figs. 2

and 3] have been calculated with the formulation pre-

sented herein. Once again the values of t and g have

been chosen to satisfy t<< Ag and g << Ag. Parts (a) and

(b) of Fig. 7 show, in continuous line, the modes obtained
by the proposed technique for two corrugation depths (for

clarity, complex modes are not shown). The crossing curves

must not cause surprise, since the two independent sets of

modes (with the two different symmetries) are repre-

sented in this figure. Good agreement with the theoretical

and experimental results of [21] can be observed for the

first two modes. However, some discrepancies have been

found between the results presented in [21] and our

results for higher order modes. On the one hand, our

results show modes not considered in the analysis of [21];

on the other hand, the impedance model used in [21] fails

to predict the transformation of higher order modes into

S1OWwaves. In Fig. 8 the significant effect of finite tooth

thickness and slot width is shown.

0.50

0.25

0

6 8 10 12 f (G5rz)

Fig. 8. Effect of finite thickness of teeth and slots. u = 22.86 mm,
b = 10.16 mm, h = 5.08 mm. — t = 0.01 mm, g = 1.00 mm. ––-–

t= 1.00 mm, g = 2.00 mm.

1.07

(a)

1.01

H
0.5-

0.0 5

g

,.O _ ~ ‘----

(b)

Fig. 9. r versus j’ diagrams for a rectangular four-corrugated-wall

waveguide. Phase and attenuation constants of complex modes are
shown in dashed lines. a = 22.86 mm, b = 10.16 mm, t = 0.01 mm, g = LOO
mm, h = 5.08 mm. (a) Even modes. (b) Odd modes.

Finally, Fig. 9 shows r versus ~ diagrams for the

four-corrugated-wall waveguide of Fig. 7(b). In this case,

the diagrams for the two mode sets have been separated

from each other. Apart from the fact that complex modes

are also present in this structure, it is worth noting that

these diagrams are significantly more complicated than

those corresponding to circular corrugated waveguides.
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VII. CONCLUSIONS

A general characterization technique for corrugated

waveguides has been proposed. The technique is based on

modal expansion of the fields in the smooth-walled wave-

guides that constitute the corrugated structure. The dis-

persion behavior of a corrugated structure can thus be

calculated without making any assumption about tooth

thickness and slot width and by taking into account all

relevant geometrical parameters.

Comparisons with other techniques and experimental

results have been presented, and good agreement has

been obtained. The numerical examples considered in-

clude corrugated waveguides of circular and rectangular

cross sections. In the rectangular case, the technique

proposed in this paper yields more accurate predictions of

the higher order modes than those based on the wall

impedance approach. In both circular and rectangular

geometries, and for deep corrugations, complex modes

have been obtained, as previously suggested by other

authors.
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